This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0totbnd | ⊢ ( 𝑋 = ∅ → ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ 𝑀 ∈ ( Met ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑋 = ∅ → ( TotBnd ‘ 𝑋 ) = ( TotBnd ‘ ∅ ) ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝑋 = ∅ → ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ 𝑀 ∈ ( TotBnd ‘ ∅ ) ) ) |
| 3 | 0elpw | ⊢ ∅ ∈ 𝒫 ∅ | |
| 4 | 0fi | ⊢ ∅ ∈ Fin | |
| 5 | elin | ⊢ ( ∅ ∈ ( 𝒫 ∅ ∩ Fin ) ↔ ( ∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin ) ) | |
| 6 | 3 4 5 | mpbir2an | ⊢ ∅ ∈ ( 𝒫 ∅ ∩ Fin ) |
| 7 | 0iun | ⊢ ∪ 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ | |
| 8 | iuneq1 | ⊢ ( 𝑣 = ∅ → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∪ 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) ) | |
| 9 | 8 | eqeq1d | ⊢ ( 𝑣 = ∅ → ( ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ ↔ ∪ 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ ) ) |
| 10 | 9 | rspcev | ⊢ ( ( ∅ ∈ ( 𝒫 ∅ ∩ Fin ) ∧ ∪ 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ ) → ∃ 𝑣 ∈ ( 𝒫 ∅ ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ ) |
| 11 | 6 7 10 | mp2an | ⊢ ∃ 𝑣 ∈ ( 𝒫 ∅ ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ |
| 12 | 11 | rgenw | ⊢ ∀ 𝑟 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 ∅ ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ |
| 13 | istotbnd3 | ⊢ ( 𝑀 ∈ ( TotBnd ‘ ∅ ) ↔ ( 𝑀 ∈ ( Met ‘ ∅ ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 ∅ ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑟 ) = ∅ ) ) | |
| 14 | 12 13 | mpbiran2 | ⊢ ( 𝑀 ∈ ( TotBnd ‘ ∅ ) ↔ 𝑀 ∈ ( Met ‘ ∅ ) ) |
| 15 | fveq2 | ⊢ ( 𝑋 = ∅ → ( Met ‘ 𝑋 ) = ( Met ‘ ∅ ) ) | |
| 16 | 15 | eleq2d | ⊢ ( 𝑋 = ∅ → ( 𝑀 ∈ ( Met ‘ 𝑋 ) ↔ 𝑀 ∈ ( Met ‘ ∅ ) ) ) |
| 17 | 14 16 | bitr4id | ⊢ ( 𝑋 = ∅ → ( 𝑀 ∈ ( TotBnd ‘ ∅ ) ↔ 𝑀 ∈ ( Met ‘ 𝑋 ) ) ) |
| 18 | 2 17 | bitrd | ⊢ ( 𝑋 = ∅ → ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ 𝑀 ∈ ( Met ‘ 𝑋 ) ) ) |