This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0totbnd | |- ( X = (/) -> ( M e. ( TotBnd ` X ) <-> M e. ( Met ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( X = (/) -> ( TotBnd ` X ) = ( TotBnd ` (/) ) ) |
|
| 2 | 1 | eleq2d | |- ( X = (/) -> ( M e. ( TotBnd ` X ) <-> M e. ( TotBnd ` (/) ) ) ) |
| 3 | 0elpw | |- (/) e. ~P (/) |
|
| 4 | 0fi | |- (/) e. Fin |
|
| 5 | elin | |- ( (/) e. ( ~P (/) i^i Fin ) <-> ( (/) e. ~P (/) /\ (/) e. Fin ) ) |
|
| 6 | 3 4 5 | mpbir2an | |- (/) e. ( ~P (/) i^i Fin ) |
| 7 | 0iun | |- U_ x e. (/) ( x ( ball ` M ) r ) = (/) |
|
| 8 | iuneq1 | |- ( v = (/) -> U_ x e. v ( x ( ball ` M ) r ) = U_ x e. (/) ( x ( ball ` M ) r ) ) |
|
| 9 | 8 | eqeq1d | |- ( v = (/) -> ( U_ x e. v ( x ( ball ` M ) r ) = (/) <-> U_ x e. (/) ( x ( ball ` M ) r ) = (/) ) ) |
| 10 | 9 | rspcev | |- ( ( (/) e. ( ~P (/) i^i Fin ) /\ U_ x e. (/) ( x ( ball ` M ) r ) = (/) ) -> E. v e. ( ~P (/) i^i Fin ) U_ x e. v ( x ( ball ` M ) r ) = (/) ) |
| 11 | 6 7 10 | mp2an | |- E. v e. ( ~P (/) i^i Fin ) U_ x e. v ( x ( ball ` M ) r ) = (/) |
| 12 | 11 | rgenw | |- A. r e. RR+ E. v e. ( ~P (/) i^i Fin ) U_ x e. v ( x ( ball ` M ) r ) = (/) |
| 13 | istotbnd3 | |- ( M e. ( TotBnd ` (/) ) <-> ( M e. ( Met ` (/) ) /\ A. r e. RR+ E. v e. ( ~P (/) i^i Fin ) U_ x e. v ( x ( ball ` M ) r ) = (/) ) ) |
|
| 14 | 12 13 | mpbiran2 | |- ( M e. ( TotBnd ` (/) ) <-> M e. ( Met ` (/) ) ) |
| 15 | fveq2 | |- ( X = (/) -> ( Met ` X ) = ( Met ` (/) ) ) |
|
| 16 | 15 | eleq2d | |- ( X = (/) -> ( M e. ( Met ` X ) <-> M e. ( Met ` (/) ) ) ) |
| 17 | 14 16 | bitr4id | |- ( X = (/) -> ( M e. ( TotBnd ` (/) ) <-> M e. ( Met ` X ) ) ) |
| 18 | 2 17 | bitrd | |- ( X = (/) -> ( M e. ( TotBnd ` X ) <-> M e. ( Met ` X ) ) ) |