This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0top | ⊢ ( 𝐽 ∈ Top → ( ∪ 𝐽 = ∅ ↔ 𝐽 = { ∅ } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc | ⊢ ( 𝐽 = { ∅ } → ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) ) | |
| 2 | 0opn | ⊢ ( 𝐽 ∈ Top → ∅ ∈ 𝐽 ) | |
| 3 | n0i | ⊢ ( ∅ ∈ 𝐽 → ¬ 𝐽 = ∅ ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐽 ∈ Top → ¬ 𝐽 = ∅ ) |
| 5 | 4 | pm2.21d | ⊢ ( 𝐽 ∈ Top → ( 𝐽 = ∅ → 𝐽 = { ∅ } ) ) |
| 6 | idd | ⊢ ( 𝐽 ∈ Top → ( 𝐽 = { ∅ } → 𝐽 = { ∅ } ) ) | |
| 7 | 5 6 | jaod | ⊢ ( 𝐽 ∈ Top → ( ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) → 𝐽 = { ∅ } ) ) |
| 8 | 1 7 | impbid2 | ⊢ ( 𝐽 ∈ Top → ( 𝐽 = { ∅ } ↔ ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) ) ) |
| 9 | uni0b | ⊢ ( ∪ 𝐽 = ∅ ↔ 𝐽 ⊆ { ∅ } ) | |
| 10 | sssn | ⊢ ( 𝐽 ⊆ { ∅ } ↔ ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) ) | |
| 11 | 9 10 | bitr2i | ⊢ ( ( 𝐽 = ∅ ∨ 𝐽 = { ∅ } ) ↔ ∪ 𝐽 = ∅ ) |
| 12 | 8 11 | bitr2di | ⊢ ( 𝐽 ∈ Top → ( ∪ 𝐽 = ∅ ↔ 𝐽 = { ∅ } ) ) |