This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The singleton of the empty set is the only topology possible for an empty underlying set. (Contributed by NM, 9-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0top | |- ( J e. Top -> ( U. J = (/) <-> J = { (/) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc | |- ( J = { (/) } -> ( J = (/) \/ J = { (/) } ) ) |
|
| 2 | 0opn | |- ( J e. Top -> (/) e. J ) |
|
| 3 | n0i | |- ( (/) e. J -> -. J = (/) ) |
|
| 4 | 2 3 | syl | |- ( J e. Top -> -. J = (/) ) |
| 5 | 4 | pm2.21d | |- ( J e. Top -> ( J = (/) -> J = { (/) } ) ) |
| 6 | idd | |- ( J e. Top -> ( J = { (/) } -> J = { (/) } ) ) |
|
| 7 | 5 6 | jaod | |- ( J e. Top -> ( ( J = (/) \/ J = { (/) } ) -> J = { (/) } ) ) |
| 8 | 1 7 | impbid2 | |- ( J e. Top -> ( J = { (/) } <-> ( J = (/) \/ J = { (/) } ) ) ) |
| 9 | uni0b | |- ( U. J = (/) <-> J C_ { (/) } ) |
|
| 10 | sssn | |- ( J C_ { (/) } <-> ( J = (/) \/ J = { (/) } ) ) |
|
| 11 | 9 10 | bitr2i | |- ( ( J = (/) \/ J = { (/) } ) <-> U. J = (/) ) |
| 12 | 8 11 | bitr2di | |- ( J e. Top -> ( U. J = (/) <-> J = { (/) } ) ) |