This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the monoid of endofunctions on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Jan-2024) (Proof shortened by AV, 31-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efmndbas0 | ⊢ ( Base ‘ ( EndoFMnd ‘ ∅ ) ) = { ∅ } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( EndoFMnd ‘ ∅ ) = ( EndoFMnd ‘ ∅ ) | |
| 2 | eqid | ⊢ ( Base ‘ ( EndoFMnd ‘ ∅ ) ) = ( Base ‘ ( EndoFMnd ‘ ∅ ) ) | |
| 3 | 1 2 | efmndbas | ⊢ ( Base ‘ ( EndoFMnd ‘ ∅ ) ) = ( ∅ ↑m ∅ ) |
| 4 | 0map0sn0 | ⊢ ( ∅ ↑m ∅ ) = { ∅ } | |
| 5 | 3 4 | eqtri | ⊢ ( Base ‘ ( EndoFMnd ‘ ∅ ) ) = { ∅ } |