This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Schroeder-Bernstein Theorem
0sdomg
Metamath Proof Explorer
Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM , 23-Mar-2006) Avoid ax-pow , ax-un . (Revised by BTernaryTau , 29-Nov-2024)
Ref
Expression
Assertion
0sdomg
⊢ A ∈ V → ∅ ≺ A ↔ A ≠ ∅
Proof
Step
Hyp
Ref
Expression
1
0domg
⊢ A ∈ V → ∅ ≼ A
2
brsdom
⊢ ∅ ≺ A ↔ ∅ ≼ A ∧ ¬ ∅ ≈ A
3
2
baib
⊢ ∅ ≼ A → ∅ ≺ A ↔ ¬ ∅ ≈ A
4
1 3
syl
⊢ A ∈ V → ∅ ≺ A ↔ ¬ ∅ ≈ A
5
en0r
⊢ ∅ ≈ A ↔ A = ∅
6
5
necon3bbii
⊢ ¬ ∅ ≈ A ↔ A ≠ ∅
7
4 6
bitrdi
⊢ A ∈ V → ∅ ≺ A ↔ A ≠ ∅