This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | 0ntr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) → ( 𝑋 ∖ 𝑆 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | ssdif0 | ⊢ ( 𝑋 ⊆ 𝑆 ↔ ( 𝑋 ∖ 𝑆 ) = ∅ ) | |
| 3 | eqss | ⊢ ( 𝑆 = 𝑋 ↔ ( 𝑆 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ) | |
| 4 | fveq2 | ⊢ ( 𝑆 = 𝑋 → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) | |
| 5 | 1 | ntrtop | ⊢ ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) |
| 6 | 4 5 | sylan9eqr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 = 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑋 ) |
| 7 | 6 | eqeq1d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 = 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ↔ 𝑋 = ∅ ) ) |
| 8 | 7 | biimpd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 = 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → 𝑋 = ∅ ) ) |
| 9 | 8 | ex | ⊢ ( 𝐽 ∈ Top → ( 𝑆 = 𝑋 → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → 𝑋 = ∅ ) ) ) |
| 10 | 3 9 | biimtrrid | ⊢ ( 𝐽 ∈ Top → ( ( 𝑆 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → 𝑋 = ∅ ) ) ) |
| 11 | 10 | expd | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ⊆ 𝑋 → ( 𝑋 ⊆ 𝑆 → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → 𝑋 = ∅ ) ) ) ) |
| 12 | 11 | com34 | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ⊆ 𝑋 → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → ( 𝑋 ⊆ 𝑆 → 𝑋 = ∅ ) ) ) ) |
| 13 | 12 | imp32 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) → ( 𝑋 ⊆ 𝑆 → 𝑋 = ∅ ) ) |
| 14 | 2 13 | biimtrrid | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) → ( ( 𝑋 ∖ 𝑆 ) = ∅ → 𝑋 = ∅ ) ) |
| 15 | 14 | necon3d | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) → ( 𝑋 ≠ ∅ → ( 𝑋 ∖ 𝑆 ) ≠ ∅ ) ) |
| 16 | 15 | imp | ⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) ∧ 𝑋 ≠ ∅ ) → ( 𝑋 ∖ 𝑆 ) ≠ ∅ ) |
| 17 | 16 | an32s | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) → ( 𝑋 ∖ 𝑆 ) ≠ ∅ ) |