This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset with an empty interior cannot cover a whole (nonempty) topology. (Contributed by NM, 12-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | 0ntr | |- ( ( ( J e. Top /\ X =/= (/) ) /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) -> ( X \ S ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | ssdif0 | |- ( X C_ S <-> ( X \ S ) = (/) ) |
|
| 3 | eqss | |- ( S = X <-> ( S C_ X /\ X C_ S ) ) |
|
| 4 | fveq2 | |- ( S = X -> ( ( int ` J ) ` S ) = ( ( int ` J ) ` X ) ) |
|
| 5 | 1 | ntrtop | |- ( J e. Top -> ( ( int ` J ) ` X ) = X ) |
| 6 | 4 5 | sylan9eqr | |- ( ( J e. Top /\ S = X ) -> ( ( int ` J ) ` S ) = X ) |
| 7 | 6 | eqeq1d | |- ( ( J e. Top /\ S = X ) -> ( ( ( int ` J ) ` S ) = (/) <-> X = (/) ) ) |
| 8 | 7 | biimpd | |- ( ( J e. Top /\ S = X ) -> ( ( ( int ` J ) ` S ) = (/) -> X = (/) ) ) |
| 9 | 8 | ex | |- ( J e. Top -> ( S = X -> ( ( ( int ` J ) ` S ) = (/) -> X = (/) ) ) ) |
| 10 | 3 9 | biimtrrid | |- ( J e. Top -> ( ( S C_ X /\ X C_ S ) -> ( ( ( int ` J ) ` S ) = (/) -> X = (/) ) ) ) |
| 11 | 10 | expd | |- ( J e. Top -> ( S C_ X -> ( X C_ S -> ( ( ( int ` J ) ` S ) = (/) -> X = (/) ) ) ) ) |
| 12 | 11 | com34 | |- ( J e. Top -> ( S C_ X -> ( ( ( int ` J ) ` S ) = (/) -> ( X C_ S -> X = (/) ) ) ) ) |
| 13 | 12 | imp32 | |- ( ( J e. Top /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) -> ( X C_ S -> X = (/) ) ) |
| 14 | 2 13 | biimtrrid | |- ( ( J e. Top /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) -> ( ( X \ S ) = (/) -> X = (/) ) ) |
| 15 | 14 | necon3d | |- ( ( J e. Top /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) -> ( X =/= (/) -> ( X \ S ) =/= (/) ) ) |
| 16 | 15 | imp | |- ( ( ( J e. Top /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) /\ X =/= (/) ) -> ( X \ S ) =/= (/) ) |
| 17 | 16 | an32s | |- ( ( ( J e. Top /\ X =/= (/) ) /\ ( S C_ X /\ ( ( int ` J ) ` S ) = (/) ) ) -> ( X \ S ) =/= (/) ) |