This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial degree respects protection. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | deg1fvi | ⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ ( I ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvi | ⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = 𝑅 ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝑅 ∈ V → ( deg1 ‘ ( I ‘ 𝑅 ) ) = ( deg1 ‘ 𝑅 ) ) |
| 3 | eqid | ⊢ ( deg1 ‘ ∅ ) = ( deg1 ‘ ∅ ) | |
| 4 | eqid | ⊢ ( Poly1 ‘ ∅ ) = ( Poly1 ‘ ∅ ) | |
| 5 | 00ply1bas | ⊢ ∅ = ( Base ‘ ( Poly1 ‘ ∅ ) ) | |
| 6 | 3 4 5 | deg1xrf | ⊢ ( deg1 ‘ ∅ ) : ∅ ⟶ ℝ* |
| 7 | ffn | ⊢ ( ( deg1 ‘ ∅ ) : ∅ ⟶ ℝ* → ( deg1 ‘ ∅ ) Fn ∅ ) | |
| 8 | 6 7 | ax-mp | ⊢ ( deg1 ‘ ∅ ) Fn ∅ |
| 9 | fn0 | ⊢ ( ( deg1 ‘ ∅ ) Fn ∅ ↔ ( deg1 ‘ ∅ ) = ∅ ) | |
| 10 | 8 9 | mpbi | ⊢ ( deg1 ‘ ∅ ) = ∅ |
| 11 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ∅ ) | |
| 12 | 11 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( deg1 ‘ ( I ‘ 𝑅 ) ) = ( deg1 ‘ ∅ ) ) |
| 13 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( deg1 ‘ 𝑅 ) = ∅ ) | |
| 14 | 10 12 13 | 3eqtr4a | ⊢ ( ¬ 𝑅 ∈ V → ( deg1 ‘ ( I ‘ 𝑅 ) ) = ( deg1 ‘ 𝑅 ) ) |
| 15 | 2 14 | pm2.61i | ⊢ ( deg1 ‘ ( I ‘ 𝑅 ) ) = ( deg1 ‘ 𝑅 ) |
| 16 | 15 | eqcomi | ⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ ( I ‘ 𝑅 ) ) |