This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Protection compatibility of the univariate polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ply1basfvi | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvi | ⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = 𝑅 ) | |
| 2 | 1 | eqcomd | ⊢ ( 𝑅 ∈ V → 𝑅 = ( I ‘ 𝑅 ) ) |
| 3 | 2 | fveq2d | ⊢ ( 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝑅 ∈ V → ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) ) |
| 5 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 6 | 00ply1bas | ⊢ ∅ = ( Base ‘ ( Poly1 ‘ ∅ ) ) | |
| 7 | 5 6 | eqtr3i | ⊢ ( Base ‘ ∅ ) = ( Base ‘ ( Poly1 ‘ ∅ ) ) |
| 8 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ 𝑅 ) = ∅ ) | |
| 9 | 8 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ∅ ) ) |
| 10 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ∅ ) | |
| 11 | 10 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( Poly1 ‘ ( I ‘ 𝑅 ) ) = ( Poly1 ‘ ∅ ) ) |
| 12 | 11 | fveq2d | ⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) = ( Base ‘ ( Poly1 ‘ ∅ ) ) ) |
| 13 | 7 9 12 | 3eqtr4a | ⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) ) |
| 14 | 4 13 | pm2.61i | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ ( I ‘ 𝑅 ) ) ) |