This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ply1basfvi and deg1fvi . (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 00ply1bas | |- (/) = ( Base ` ( Poly1 ` (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel | |- -. a e. (/) |
|
| 2 | noel | |- -. ( a ` ( 1o X. { 0 } ) ) e. (/) |
|
| 3 | eqid | |- ( Poly1 ` (/) ) = ( Poly1 ` (/) ) |
|
| 4 | eqid | |- ( Base ` ( Poly1 ` (/) ) ) = ( Base ` ( Poly1 ` (/) ) ) |
|
| 5 | base0 | |- (/) = ( Base ` (/) ) |
|
| 6 | 3 4 5 | ply1basf | |- ( a e. ( Base ` ( Poly1 ` (/) ) ) -> a : ( NN0 ^m 1o ) --> (/) ) |
| 7 | 0nn0 | |- 0 e. NN0 |
|
| 8 | 7 | fconst6 | |- ( 1o X. { 0 } ) : 1o --> NN0 |
| 9 | nn0ex | |- NN0 e. _V |
|
| 10 | 1oex | |- 1o e. _V |
|
| 11 | 9 10 | elmap | |- ( ( 1o X. { 0 } ) e. ( NN0 ^m 1o ) <-> ( 1o X. { 0 } ) : 1o --> NN0 ) |
| 12 | 8 11 | mpbir | |- ( 1o X. { 0 } ) e. ( NN0 ^m 1o ) |
| 13 | ffvelcdm | |- ( ( a : ( NN0 ^m 1o ) --> (/) /\ ( 1o X. { 0 } ) e. ( NN0 ^m 1o ) ) -> ( a ` ( 1o X. { 0 } ) ) e. (/) ) |
|
| 14 | 6 12 13 | sylancl | |- ( a e. ( Base ` ( Poly1 ` (/) ) ) -> ( a ` ( 1o X. { 0 } ) ) e. (/) ) |
| 15 | 2 14 | mto | |- -. a e. ( Base ` ( Poly1 ` (/) ) ) |
| 16 | 1 15 | 2false | |- ( a e. (/) <-> a e. ( Base ` ( Poly1 ` (/) ) ) ) |
| 17 | 16 | eqriv | |- (/) = ( Base ` ( Poly1 ` (/) ) ) |