This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpnz |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ||
| 2 | n0 | ||
| 3 | 1 2 | anbi12i | |
| 4 | exdistrv | ||
| 5 | 3 4 | bitr4i | |
| 6 | opex | ||
| 7 | eleq1 | ||
| 8 | opelxp | ||
| 9 | 7 8 | bitrdi | |
| 10 | 6 9 | spcev | |
| 11 | n0 | ||
| 12 | 10 11 | sylibr | |
| 13 | 12 | exlimivv | |
| 14 | 5 13 | sylbi | |
| 15 | xpeq1 | ||
| 16 | 0xp | ||
| 17 | 15 16 | eqtrdi | |
| 18 | 17 | necon3i | |
| 19 | xpeq2 | ||
| 20 | xp0 | ||
| 21 | 19 20 | eqtrdi | |
| 22 | 21 | necon3i | |
| 23 | 18 22 | jca | |
| 24 | 14 23 | impbii |