This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
xp0
Metamath Proof Explorer
Theorem xp0
Description: The Cartesian product with the empty set is empty. Part of Theorem
3.13(ii) of Monk1 p. 37. (Contributed by NM , 12-Apr-2004) Avoid
axioms. (Revised by TM , 1-Feb-2026)
Ref
Expression
Assertion
xp0
⊢ A × ∅ = ∅
Proof
Step
Hyp
Ref
Expression
1
noel
⊢ ¬ y ∈ ∅
2
simprr
⊢ z = x y ∧ x ∈ A ∧ y ∈ ∅ → y ∈ ∅
3
1 2
mto
⊢ ¬ z = x y ∧ x ∈ A ∧ y ∈ ∅
4
3
nex
⊢ ¬ ∃ y z = x y ∧ x ∈ A ∧ y ∈ ∅
5
4
nex
⊢ ¬ ∃ x ∃ y z = x y ∧ x ∈ A ∧ y ∈ ∅
6
elxpi
⊢ z ∈ A × ∅ → ∃ x ∃ y z = x y ∧ x ∈ A ∧ y ∈ ∅
7
5 6
mto
⊢ ¬ z ∈ A × ∅
8
7
nel0
⊢ A × ∅ = ∅