This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem spcev

Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993) (Proof shortened by Eric Schmidt, 22-Dec-2006)

Ref Expression
Hypotheses spcv.1 A V
spcv.2 x = A φ ψ
Assertion spcev ψ x φ

Proof

Step Hyp Ref Expression
1 spcv.1 A V
2 spcv.2 x = A φ ψ
3 2 spcegv A V ψ x φ
4 1 3 ax-mp ψ x φ