This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the class of universal property. (Contributed by Zhi Wang, 25-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uprcl2.x | No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |- | |
| uprcl4.b | |||
| Assertion | uprcl4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uprcl2.x | Could not format ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |- | |
| 2 | uprcl4.b | ||
| 3 | eqid | ||
| 4 | eqid | ||
| 5 | eqid | ||
| 6 | eqid | ||
| 7 | 1 3 | uprcl3 | |
| 8 | 1 | uprcl2 | |
| 9 | 2 3 4 5 6 7 8 | isuplem | Could not format ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W ( Hom ` E ) ( F ` X ) ) ) /\ A. y e. B A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( X ( Hom ` D ) y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` y ) ) M ) ) ) ) : No typesetting found for |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W ( Hom ` E ) ( F ` X ) ) ) /\ A. y e. B A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( X ( Hom ` D ) y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` y ) ) M ) ) ) ) with typecode |- |
| 10 | 1 9 | mpbid | |
| 11 | 10 | simplld |