This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The universal property of a universal pair. (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isup2.b | ||
| isup2.h | |||
| isup2.j | |||
| isup2.o | |||
| isup2.x | No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |- | ||
| Assertion | isup2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isup2.b | ||
| 2 | isup2.h | ||
| 3 | isup2.j | ||
| 4 | isup2.o | ||
| 5 | isup2.x | Could not format ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) with typecode |- | |
| 6 | eqid | ||
| 7 | 5 6 | uprcl3 | |
| 8 | 5 | uprcl2 | |
| 9 | 5 1 | uprcl4 | |
| 10 | 5 3 | uprcl5 | |
| 11 | 1 6 2 3 4 7 8 9 10 | isup | Could not format ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) : No typesetting found for |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) with typecode |- |
| 12 | 5 11 | mpbid |