This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem imp

Description: Importation inference. (Contributed by NM, 3-Jan-1993) (Proof shortened by Eric Schmidt, 22-Dec-2006)

Ref Expression
Hypothesis imp.1 φ ψ χ
Assertion imp φ ψ χ

Proof

Step Hyp Ref Expression
1 imp.1 φ ψ χ
2 df-an φ ψ ¬ φ ¬ ψ
3 1 impi ¬ φ ¬ ψ χ
4 2 3 sylbi φ ψ χ