This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sbequ12

Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993)

Ref Expression
Assertion sbequ12 x = y φ y x φ

Proof

Step Hyp Ref Expression
1 sbequ1 x = y φ y x φ
2 sbequ2 x = y y x φ φ
3 1 2 impbid x = y φ y x φ