This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
ralprg
Metamath Proof Explorer
Description: Convert a restricted universal quantification over a pair to a
conjunction. (Contributed by NM , 17-Sep-2011) (Revised by Mario
Carneiro , 23-Apr-2015) Avoid ax-10 , ax-12 . (Revised by GG , 30-Sep-2024)
Ref
Expression
Hypotheses
ralprg.1
⊢ x = A → φ ↔ ψ
ralprg.2
⊢ x = B → φ ↔ χ
Assertion
ralprg
⊢ A ∈ V ∧ B ∈ W → ∀ x ∈ A B φ ↔ ψ ∧ χ
Proof
Step
Hyp
Ref
Expression
1
ralprg.1
⊢ x = A → φ ↔ ψ
2
ralprg.2
⊢ x = B → φ ↔ χ
3
df-pr
⊢ A B = A ∪ B
4
3
raleqi
⊢ ∀ x ∈ A B φ ↔ ∀ x ∈ A ∪ B φ
5
ralunb
⊢ ∀ x ∈ A ∪ B φ ↔ ∀ x ∈ A φ ∧ ∀ x ∈ B φ
6
4 5
bitri
⊢ ∀ x ∈ A B φ ↔ ∀ x ∈ A φ ∧ ∀ x ∈ B φ
7
1
ralsng
⊢ A ∈ V → ∀ x ∈ A φ ↔ ψ
8
2
ralsng
⊢ B ∈ W → ∀ x ∈ B φ ↔ χ
9
7 8
bi2anan9
⊢ A ∈ V ∧ B ∈ W → ∀ x ∈ A φ ∧ ∀ x ∈ B φ ↔ ψ ∧ χ
10
6 9
bitrid
⊢ A ∈ V ∧ B ∈ W → ∀ x ∈ A B φ ↔ ψ ∧ χ