This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralrimivvva
Metamath Proof Explorer
Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted
quantifier version with triple quantification.) (Contributed by Mario
Carneiro , 9-Jul-2014)
Ref
Expression
Hypothesis
ralrimivvva.1
⊢ φ ∧ x ∈ A ∧ y ∈ B ∧ z ∈ C → ψ
Assertion
ralrimivvva
⊢ φ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ψ
Proof
Step
Hyp
Ref
Expression
1
ralrimivvva.1
⊢ φ ∧ x ∈ A ∧ y ∈ B ∧ z ∈ C → ψ
2
1
3anassrs
⊢ φ ∧ x ∈ A ∧ y ∈ B ∧ z ∈ C → ψ
3
2
ralrimiva
⊢ φ ∧ x ∈ A ∧ y ∈ B → ∀ z ∈ C ψ
4
3
ralrimiva
⊢ φ ∧ x ∈ A → ∀ y ∈ B ∀ z ∈ C ψ
5
4
ralrimiva
⊢ φ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ψ