This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
breng
Metamath Proof Explorer
Description: Equinumerosity relation. This variation of bren does not require the
Axiom of Union. (Contributed by NM , 15-Jun-1998) Extract from a
subproof of bren . (Revised by BTernaryTau , 23-Sep-2024)
Ref
Expression
Assertion
breng
⊢ A ∈ V ∧ B ∈ W → A ≈ B ↔ ∃ f f : A ⟶ 1-1 onto B
Proof
Step
Hyp
Ref
Expression
1
f1oeq2
⊢ x = A → f : x ⟶ 1-1 onto y ↔ f : A ⟶ 1-1 onto y
2
1
exbidv
⊢ x = A → ∃ f f : x ⟶ 1-1 onto y ↔ ∃ f f : A ⟶ 1-1 onto y
3
f1oeq3
⊢ y = B → f : A ⟶ 1-1 onto y ↔ f : A ⟶ 1-1 onto B
4
3
exbidv
⊢ y = B → ∃ f f : A ⟶ 1-1 onto y ↔ ∃ f f : A ⟶ 1-1 onto B
5
df-en
⊢ ≈ = x y | ∃ f f : x ⟶ 1-1 onto y
6
2 4 5
brabg
⊢ A ∈ V ∧ B ∈ W → A ≈ B ↔ ∃ f f : A ⟶ 1-1 onto B