This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double negation of a product in a ring. ( mul2neg analog.) (Contributed by Mario Carneiro, 4-Dec-2014) (Proof shortened by AV, 30-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringneglmul.b | ||
| ringneglmul.t | |||
| ringneglmul.n | |||
| ringneglmul.r | |||
| ringneglmul.x | |||
| ringneglmul.y | |||
| Assertion | ringm2neg |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringneglmul.b | ||
| 2 | ringneglmul.t | ||
| 3 | ringneglmul.n | ||
| 4 | ringneglmul.r | ||
| 5 | ringneglmul.x | ||
| 6 | ringneglmul.y | ||
| 7 | ringrng | ||
| 8 | 4 7 | syl | |
| 9 | 1 2 3 8 5 6 | rngm2neg |