This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two proper unordered pairs are equinumerous. (Contributed by BTernaryTau, 23-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | en2prd.1 | ||
| en2prd.2 | |||
| en2prd.3 | |||
| en2prd.4 | |||
| en2prd.5 | |||
| en2prd.6 | |||
| Assertion | en2prd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2prd.1 | ||
| 2 | en2prd.2 | ||
| 3 | en2prd.3 | ||
| 4 | en2prd.4 | ||
| 5 | en2prd.5 | ||
| 6 | en2prd.6 | ||
| 7 | prex | ||
| 8 | f1oprg | ||
| 9 | 1 3 2 4 8 | syl22anc | |
| 10 | 5 6 9 | mp2and | |
| 11 | f1oeq1 | ||
| 12 | 11 | spcegv | |
| 13 | 7 10 12 | mpsyl | |
| 14 | prex | ||
| 15 | prex | ||
| 16 | breng | ||
| 17 | 14 15 16 | mp2an | |
| 18 | 13 17 | sylibr |