This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem phnvi

Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis phnvi.1 U CPreHil OLD
Assertion phnvi U NrmCVec

Proof

Step Hyp Ref Expression
1 phnvi.1 U CPreHil OLD
2 phnv U CPreHil OLD U NrmCVec
3 1 2 ax-mp U NrmCVec