This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
ordn2lp
Metamath Proof Explorer
Description: An ordinal class cannot be an element of one of its members. Variant of
first part of Theorem 2.2(vii) of BellMachover p. 469. (Contributed by NM , 3-Apr-1994)
Ref
Expression
Assertion
ordn2lp
⊢ Ord ⁡ A → ¬ A ∈ B ∧ B ∈ A
Proof
Step
Hyp
Ref
Expression
1
ordirr
⊢ Ord ⁡ A → ¬ A ∈ A
2
ordtr
⊢ Ord ⁡ A → Tr ⁡ A
3
trel
⊢ Tr ⁡ A → A ∈ B ∧ B ∈ A → A ∈ A
4
2 3
syl
⊢ Ord ⁡ A → A ∈ B ∧ B ∈ A → A ∈ A
5
1 4
mtod
⊢ Ord ⁡ A → ¬ A ∈ B ∧ B ∈ A