This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The ` # ` (set size) function
Finite induction on the size of the first component of a binary relation
opfi1ind
Metamath Proof Explorer
Description: Properties of an ordered pair with a finite first component, proven by
finite induction on the size of the first component. This theorem can
be applied for graphs (represented as ordered pairs of vertices and
edges) with a finite number of vertices, e.g., fusgrfis .
(Contributed by AV , 22-Oct-2020) (Revised by AV , 28-Mar-2021)
Ref
Expression
Hypotheses
opfi1ind.e
⊢ E ∈ V
opfi1ind.f
⊢ F ∈ V
opfi1ind.1
⊢ v = V ∧ e = E → ψ ↔ φ
opfi1ind.2
⊢ v = w ∧ e = f → ψ ↔ θ
opfi1ind.3
⊢ v e ∈ G ∧ n ∈ v → v ∖ n F ∈ G
opfi1ind.4
⊢ w = v ∖ n ∧ f = F → θ ↔ χ
opfi1ind.base
⊢ v e ∈ G ∧ v = 0 → ψ
opfi1ind.step
⊢ y + 1 ∈ ℕ 0 ∧ v e ∈ G ∧ v = y + 1 ∧ n ∈ v ∧ χ → ψ
Assertion
opfi1ind
⊢ V E ∈ G ∧ V ∈ Fin → φ
Proof
Step
Hyp
Ref
Expression
1
opfi1ind.e
⊢ E ∈ V
2
opfi1ind.f
⊢ F ∈ V
3
opfi1ind.1
⊢ v = V ∧ e = E → ψ ↔ φ
4
opfi1ind.2
⊢ v = w ∧ e = f → ψ ↔ θ
5
opfi1ind.3
⊢ v e ∈ G ∧ n ∈ v → v ∖ n F ∈ G
6
opfi1ind.4
⊢ w = v ∖ n ∧ f = F → θ ↔ χ
7
opfi1ind.base
⊢ v e ∈ G ∧ v = 0 → ψ
8
opfi1ind.step
⊢ y + 1 ∈ ℕ 0 ∧ v e ∈ G ∧ v = y + 1 ∧ n ∈ v ∧ χ → ψ
9
hashge0
⊢ V ∈ Fin → 0 ≤ V
10
9
adantl
⊢ V E ∈ G ∧ V ∈ Fin → 0 ≤ V
11
0nn0
⊢ 0 ∈ ℕ 0
12
1 2 11 3 4 5 6 7 8
opfi1uzind
⊢ V E ∈ G ∧ V ∈ Fin ∧ 0 ≤ V → φ
13
10 12
mpd3an3
⊢ V E ∈ G ∧ V ∈ Fin → φ