This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Ordered-pair class abstractions (class builders)
opabss
Metamath Proof Explorer
Description: The collection of ordered pairs in a class is a subclass of it.
(Contributed by NM , 27-Dec-1996) (Proof shortened by Andrew Salmon , 9-Jul-2011)
Ref
Expression
Assertion
opabss
⊢ x y | x R y ⊆ R
Proof
Step
Hyp
Ref
Expression
1
df-opab
⊢ x y | x R y = z | ∃ x ∃ y z = x y ∧ x R y
2
df-br
⊢ x R y ↔ x y ∈ R
3
eleq1
⊢ z = x y → z ∈ R ↔ x y ∈ R
4
3
biimpar
⊢ z = x y ∧ x y ∈ R → z ∈ R
5
2 4
sylan2b
⊢ z = x y ∧ x R y → z ∈ R
6
5
exlimivv
⊢ ∃ x ∃ y z = x y ∧ x R y → z ∈ R
7
6
abssi
⊢ z | ∃ x ∃ y z = x y ∧ x R y ⊆ R
8
1 7
eqsstri
⊢ x y | x R y ⊆ R