This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of Monk1 p. 34. Usually x and y are distinct, although the definition does not require it (see dfid2 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 . An example is given by ex-opab . (Contributed by NM, 4-Jul-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-opab |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | vx | ||
| 1 | vy | ||
| 2 | wph | ||
| 3 | 2 0 1 | copab | |
| 4 | vz | ||
| 5 | 4 | cv | |
| 6 | 0 | cv | |
| 7 | 1 | cv | |
| 8 | 6 7 | cop | |
| 9 | 5 8 | wceq | |
| 10 | 9 2 | wa | |
| 11 | 10 1 | wex | |
| 12 | 11 0 | wex | |
| 13 | 12 4 | cab | |
| 14 | 3 13 | wceq |