This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the restriction of a class to a singleton is not a function, then its value is the empty set. (An artifact of our function value definition.) (Contributed by NM, 8-Aug-2010) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nfunsn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eumo | ||
| 2 | vex | ||
| 3 | 2 | brresi | |
| 4 | velsn | ||
| 5 | breq1 | ||
| 6 | 4 5 | sylbi | |
| 7 | 6 | biimpa | |
| 8 | 3 7 | sylbi | |
| 9 | 8 | moimi | |
| 10 | 1 9 | syl | |
| 11 | tz6.12-2 | ||
| 12 | 10 11 | nsyl4 | |
| 13 | 12 | alrimiv | |
| 14 | relres | ||
| 15 | 13 14 | jctil | |
| 16 | dffun6 | ||
| 17 | 15 16 | sylibr | |
| 18 | 17 | con1i |