This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem nsyl4

Description: A negated syllogism inference. (Contributed by NM, 15-Feb-1996)

Ref Expression
Hypotheses nsyl4.1 φ ψ
nsyl4.2 ¬ φ χ
Assertion nsyl4 ¬ χ ψ

Proof

Step Hyp Ref Expression
1 nsyl4.1 φ ψ
2 nsyl4.2 ¬ φ χ
3 2 con1i ¬ χ φ
4 3 1 syl ¬ χ ψ