This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
dffun6
Metamath Proof Explorer
Description: Alternate definition of a function using "at most one" notation.
(Contributed by NM , 9-Mar-1995) Avoid ax-10 , ax-12 . (Revised by SN , 19-Dec-2024)
Ref
Expression
Assertion
dffun6
⊢ Fun ⁡ F ↔ Rel ⁡ F ∧ ∀ x ∃ * y x F y
Proof
Step
Hyp
Ref
Expression
1
dffun2
⊢ Fun ⁡ F ↔ Rel ⁡ F ∧ ∀ x ∀ y ∀ z x F y ∧ x F z → y = z
2
breq2
⊢ y = z → x F y ↔ x F z
3
2
mo4
⊢ ∃ * y x F y ↔ ∀ y ∀ z x F y ∧ x F z → y = z
4
3
albii
⊢ ∀ x ∃ * y x F y ↔ ∀ x ∀ y ∀ z x F y ∧ x F z → y = z
5
4
anbi2i
⊢ Rel ⁡ F ∧ ∀ x ∃ * y x F y ↔ Rel ⁡ F ∧ ∀ x ∀ y ∀ z x F y ∧ x F z → y = z
6
1 5
bitr4i
⊢ Fun ⁡ F ↔ Rel ⁡ F ∧ ∀ x ∃ * y x F y