This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the restriction of a class to a singleton is not a function, then its value is the empty set. (An artifact of our function value definition.) (Contributed by NM, 8-Aug-2010) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nfunsn | |- ( -. Fun ( F |` { A } ) -> ( F ` A ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eumo | |- ( E! y A F y -> E* y A F y ) |
|
| 2 | vex | |- y e. _V |
|
| 3 | 2 | brresi | |- ( x ( F |` { A } ) y <-> ( x e. { A } /\ x F y ) ) |
| 4 | velsn | |- ( x e. { A } <-> x = A ) |
|
| 5 | breq1 | |- ( x = A -> ( x F y <-> A F y ) ) |
|
| 6 | 4 5 | sylbi | |- ( x e. { A } -> ( x F y <-> A F y ) ) |
| 7 | 6 | biimpa | |- ( ( x e. { A } /\ x F y ) -> A F y ) |
| 8 | 3 7 | sylbi | |- ( x ( F |` { A } ) y -> A F y ) |
| 9 | 8 | moimi | |- ( E* y A F y -> E* y x ( F |` { A } ) y ) |
| 10 | 1 9 | syl | |- ( E! y A F y -> E* y x ( F |` { A } ) y ) |
| 11 | tz6.12-2 | |- ( -. E! y A F y -> ( F ` A ) = (/) ) |
|
| 12 | 10 11 | nsyl4 | |- ( -. ( F ` A ) = (/) -> E* y x ( F |` { A } ) y ) |
| 13 | 12 | alrimiv | |- ( -. ( F ` A ) = (/) -> A. x E* y x ( F |` { A } ) y ) |
| 14 | relres | |- Rel ( F |` { A } ) |
|
| 15 | 13 14 | jctil | |- ( -. ( F ` A ) = (/) -> ( Rel ( F |` { A } ) /\ A. x E* y x ( F |` { A } ) y ) ) |
| 16 | dffun6 | |- ( Fun ( F |` { A } ) <-> ( Rel ( F |` { A } ) /\ A. x E* y x ( F |` { A } ) y ) ) |
|
| 17 | 15 16 | sylibr | |- ( -. ( F ` A ) = (/) -> Fun ( F |` { A } ) ) |
| 18 | 17 | con1i | |- ( -. Fun ( F |` { A } ) -> ( F ` A ) = (/) ) |