This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
relres
Metamath Proof Explorer
Description: A restriction is a relation. Exercise 12 of TakeutiZaring p. 25.
(Contributed by NM , 2-Aug-1994) (Proof shortened by Andrew Salmon , 27-Aug-2011)
Ref
Expression
Assertion
relres
⊢ Rel ⁡ A ↾ B
Proof
Step
Hyp
Ref
Expression
1
df-res
⊢ A ↾ B = A ∩ B × V
2
inss2
⊢ A ∩ B × V ⊆ B × V
3
1 2
eqsstri
⊢ A ↾ B ⊆ B × V
4
relxp
⊢ Rel ⁡ B × V
5
relss
⊢ A ↾ B ⊆ B × V → Rel ⁡ B × V → Rel ⁡ A ↾ B
6
3 4 5
mp2
⊢ Rel ⁡ A ↾ B