This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem dmss

Description: Subset theorem for domain. (Contributed by NM, 11-Aug-1994)

Ref Expression
Assertion dmss A B dom A dom B

Proof

Step Hyp Ref Expression
1 ssel A B x y A x y B
2 1 eximdv A B y x y A y x y B
3 vex x V
4 3 eldm2 x dom A y x y A
5 3 eldm2 x dom B y x y B
6 2 4 5 3imtr4g A B x dom A x dom B
7 6 ssrdv A B dom A dom B