This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017)
|
|
Ref |
Expression |
|
Hypotheses |
gsumconstf.k |
|
|
|
gsumconstf.b |
|
|
|
gsumconstf.m |
|
|
Assertion |
gsumconstf |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumconstf.k |
|
| 2 |
|
gsumconstf.b |
|
| 3 |
|
gsumconstf.m |
|
| 4 |
|
nfcv |
|
| 5 |
|
eqidd |
|
| 6 |
4 1 5
|
cbvmpt |
|
| 7 |
6
|
oveq2i |
|
| 8 |
2 3
|
gsumconst |
|
| 9 |
7 8
|
eqtrid |
|