This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
|
|
Ref |
Expression |
|
Hypotheses |
caovassg.1 |
|
|
|
caovassd.2 |
|
|
|
caovassd.3 |
|
|
|
caovassd.4 |
|
|
Assertion |
caovassd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caovassg.1 |
|
| 2 |
|
caovassd.2 |
|
| 3 |
|
caovassd.3 |
|
| 4 |
|
caovassd.4 |
|
| 5 |
|
id |
|
| 6 |
1
|
caovassg |
|
| 7 |
5 2 3 4 6
|
syl13anc |
|