This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce a group from its properties. Unlike isgrpd2 , this one goes straight from the base properties rather than going through Mnd . N (negative) is normally dependent on x i.e. read it as N ( x ) . (Contributed by NM, 6-Jun-2013) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgrpd.b | ||
| isgrpd.p | |||
| isgrpd.c | |||
| isgrpd.a | |||
| isgrpd.z | |||
| isgrpd.i | |||
| isgrpd.n | |||
| isgrpd.j | |||
| Assertion | isgrpd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpd.b | ||
| 2 | isgrpd.p | ||
| 3 | isgrpd.c | ||
| 4 | isgrpd.a | ||
| 5 | isgrpd.z | ||
| 6 | isgrpd.i | ||
| 7 | isgrpd.n | ||
| 8 | isgrpd.j | ||
| 9 | oveq1 | ||
| 10 | 9 | eqeq1d | |
| 11 | 10 | rspcev | |
| 12 | 7 8 11 | syl2anc | |
| 13 | 1 2 3 4 5 6 12 | isgrpde |