This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Founded and well-ordering relations
fri
Metamath Proof Explorer
Theorem fri
Description: A nonempty subset of an R -well-founded class has an R -minimal
element (inference form). (Contributed by BJ , 16-Nov-2024) (Proof
shortened by BJ , 19-Nov-2024)
Ref
Expression
Assertion
fri
⊢ B ∈ C ∧ R Fr A ∧ B ⊆ A ∧ B ≠ ∅ → ∃ x ∈ B ∀ y ∈ B ¬ y R x
Proof
Step
Hyp
Ref
Expression
1
simplr
⊢ B ∈ C ∧ R Fr A ∧ B ⊆ A ∧ B ≠ ∅ → R Fr A
2
simprl
⊢ B ∈ C ∧ R Fr A ∧ B ⊆ A ∧ B ≠ ∅ → B ⊆ A
3
simpll
⊢ B ∈ C ∧ R Fr A ∧ B ⊆ A ∧ B ≠ ∅ → B ∈ C
4
simprr
⊢ B ∈ C ∧ R Fr A ∧ B ⊆ A ∧ B ≠ ∅ → B ≠ ∅
5
1 2 3 4
frd
⊢ B ∈ C ∧ R Fr A ∧ B ⊆ A ∧ B ≠ ∅ → ∃ x ∈ B ∀ y ∈ B ¬ y R x