This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ral2imi
Metamath Proof Explorer
Description: Inference quantifying antecedent, nested antecedent, and consequent,
with a strong hypothesis. (Contributed by NM , 19-Dec-2006) Allow
shortening of ralim . (Revised by Wolf Lammen , 1-Dec-2019)
Ref
Expression
Hypothesis
ral2imi.1
⊢ φ → ψ → χ
Assertion
ral2imi
⊢ ∀ x ∈ A φ → ∀ x ∈ A ψ → ∀ x ∈ A χ
Proof
Step
Hyp
Ref
Expression
1
ral2imi.1
⊢ φ → ψ → χ
2
df-ral
⊢ ∀ x ∈ A φ ↔ ∀ x x ∈ A → φ
3
1
imim3i
⊢ x ∈ A → φ → x ∈ A → ψ → x ∈ A → χ
4
3
al2imi
⊢ ∀ x x ∈ A → φ → ∀ x x ∈ A → ψ → ∀ x x ∈ A → χ
5
df-ral
⊢ ∀ x ∈ A ψ ↔ ∀ x x ∈ A → ψ
6
df-ral
⊢ ∀ x ∈ A χ ↔ ∀ x x ∈ A → χ
7
4 5 6
3imtr4g
⊢ ∀ x x ∈ A → φ → ∀ x ∈ A ψ → ∀ x ∈ A χ
8
2 7
sylbi
⊢ ∀ x ∈ A φ → ∀ x ∈ A ψ → ∀ x ∈ A χ