This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A syllogism deduction with conjoined antecedents. (Contributed by NM, 24-Feb-2005) (Proof shortened by Wolf Lammen, 6-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syldan.1 | ||
| syldan.2 | |||
| Assertion | syldan |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syldan.1 | ||
| 2 | syldan.2 | ||
| 3 | simpl | ||
| 4 | 3 1 2 | syl2anc |