This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem difsn

Description: An element not in a set can be removed without affecting the set. (Contributed by NM, 16-Mar-2006) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion difsn ¬ A B B A = B

Proof

Step Hyp Ref Expression
1 eldifsn x B A x B x A
2 simpl x B x A x B
3 nelelne ¬ A B x B x A
4 3 ancld ¬ A B x B x B x A
5 2 4 impbid2 ¬ A B x B x A x B
6 1 5 bitrid ¬ A B x B A x B
7 6 eqrdv ¬ A B B A = B