This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem bicomi

Description: Inference from commutative law for logical equivalence. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypothesis bicomi.1 φ ψ
Assertion bicomi ψ φ

Proof

Step Hyp Ref Expression
1 bicomi.1 φ ψ
2 bicom1 φ ψ ψ φ
3 1 2 ax-mp ψ φ