This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-13 (Quantified Equality)
cbv2h
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution. Usage
of this theorem is discouraged because it depends on ax-13 .
(Contributed by NM , 11-May-1993) (New usage is discouraged.)
Ref
Expression
Hypotheses
cbv2h.1
⊢ φ → ψ → ∀ y ψ
cbv2h.2
⊢ φ → χ → ∀ x χ
cbv2h.3
⊢ φ → x = y → ψ ↔ χ
Assertion
cbv2h
⊢ ∀ x ∀ y φ → ∀ x ψ ↔ ∀ y χ
Proof
Step
Hyp
Ref
Expression
1
cbv2h.1
⊢ φ → ψ → ∀ y ψ
2
cbv2h.2
⊢ φ → χ → ∀ x χ
3
cbv2h.3
⊢ φ → x = y → ψ ↔ χ
4
biimp
⊢ ψ ↔ χ → ψ → χ
5
3 4
syl6
⊢ φ → x = y → ψ → χ
6
1 2 5
cbv1h
⊢ ∀ x ∀ y φ → ∀ x ψ → ∀ y χ
7
equcomi
⊢ y = x → x = y
8
biimpr
⊢ ψ ↔ χ → χ → ψ
9
7 3 8
syl56
⊢ φ → y = x → χ → ψ
10
2 1 9
cbv1h
⊢ ∀ y ∀ x φ → ∀ y χ → ∀ x ψ
11
10
alcoms
⊢ ∀ x ∀ y φ → ∀ y χ → ∀ x ψ
12
6 11
impbid
⊢ ∀ x ∀ y φ → ∀ x ψ ↔ ∀ y χ