This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-13 (Quantified Equality)
cbv1h
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution. Usage
of this theorem is discouraged because it depends on ax-13 .
(Contributed by NM , 11-May-1993) (Proof shortened by Wolf Lammen , 13-May-2018) (New usage is discouraged.)
Ref
Expression
Hypotheses
cbv1h.1
⊢ φ → ψ → ∀ y ψ
cbv1h.2
⊢ φ → χ → ∀ x χ
cbv1h.3
⊢ φ → x = y → ψ → χ
Assertion
cbv1h
⊢ ∀ x ∀ y φ → ∀ x ψ → ∀ y χ
Proof
Step
Hyp
Ref
Expression
1
cbv1h.1
⊢ φ → ψ → ∀ y ψ
2
cbv1h.2
⊢ φ → χ → ∀ x χ
3
cbv1h.3
⊢ φ → x = y → ψ → χ
4
nfa1
⊢ Ⅎ x ∀ x ∀ y φ
5
nfa2
⊢ Ⅎ y ∀ x ∀ y φ
6
2sp
⊢ ∀ x ∀ y φ → φ
7
6 1
syl
⊢ ∀ x ∀ y φ → ψ → ∀ y ψ
8
5 7
nf5d
⊢ ∀ x ∀ y φ → Ⅎ y ψ
9
6 2
syl
⊢ ∀ x ∀ y φ → χ → ∀ x χ
10
4 9
nf5d
⊢ ∀ x ∀ y φ → Ⅎ x χ
11
6 3
syl
⊢ ∀ x ∀ y φ → x = y → ψ → χ
12
4 5 8 10 11
cbv1
⊢ ∀ x ∀ y φ → ∀ x ψ → ∀ y χ