This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem biimpr

Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999) (Proof shortened by Wolf Lammen, 11-Nov-2012)

Ref Expression
Assertion biimpr φ ψ ψ φ

Proof

Step Hyp Ref Expression
1 dfbi1 φ ψ ¬ φ ψ ¬ ψ φ
2 simprim ¬ φ ψ ¬ ψ φ ψ φ
3 1 2 sylbi φ ψ ψ φ