This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem alcoms

Description: Swap quantifiers in an antecedent. (Contributed by NM, 11-May-1993)

Ref Expression
Hypothesis alcoms.1 x y φ ψ
Assertion alcoms y x φ ψ

Proof

Step Hyp Ref Expression
1 alcoms.1 x y φ ψ
2 ax-11 y x φ x y φ
3 2 1 syl y x φ ψ