This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 11-May-1993) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbv2h.1 | |- ( ph -> ( ps -> A. y ps ) ) |
|
| cbv2h.2 | |- ( ph -> ( ch -> A. x ch ) ) |
||
| cbv2h.3 | |- ( ph -> ( x = y -> ( ps <-> ch ) ) ) |
||
| Assertion | cbv2h | |- ( A. x A. y ph -> ( A. x ps <-> A. y ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbv2h.1 | |- ( ph -> ( ps -> A. y ps ) ) |
|
| 2 | cbv2h.2 | |- ( ph -> ( ch -> A. x ch ) ) |
|
| 3 | cbv2h.3 | |- ( ph -> ( x = y -> ( ps <-> ch ) ) ) |
|
| 4 | biimp | |- ( ( ps <-> ch ) -> ( ps -> ch ) ) |
|
| 5 | 3 4 | syl6 | |- ( ph -> ( x = y -> ( ps -> ch ) ) ) |
| 6 | 1 2 5 | cbv1h | |- ( A. x A. y ph -> ( A. x ps -> A. y ch ) ) |
| 7 | equcomi | |- ( y = x -> x = y ) |
|
| 8 | biimpr | |- ( ( ps <-> ch ) -> ( ch -> ps ) ) |
|
| 9 | 7 3 8 | syl56 | |- ( ph -> ( y = x -> ( ch -> ps ) ) ) |
| 10 | 2 1 9 | cbv1h | |- ( A. y A. x ph -> ( A. y ch -> A. x ps ) ) |
| 11 | 10 | alcoms | |- ( A. x A. y ph -> ( A. y ch -> A. x ps ) ) |
| 12 | 6 11 | impbid | |- ( A. x A. y ph -> ( A. x ps <-> A. y ch ) ) |