This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets (cont.)
0sdom1domALT
Metamath Proof Explorer
Description: Alternate proof of 0sdom1dom , shorter but requiring ax-un .
(Contributed by NM , 28-Sep-2004) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
0sdom1domALT
⊢ ∅ ≺ A ↔ 1 𝑜 ≼ A
Proof
Step
Hyp
Ref
Expression
1
peano1
⊢ ∅ ∈ ω
2
sucdom
⊢ ∅ ∈ ω → ∅ ≺ A ↔ suc ⁡ ∅ ≼ A
3
1 2
ax-mp
⊢ ∅ ≺ A ↔ suc ⁡ ∅ ≼ A
4
df-1o
⊢ 1 𝑜 = suc ⁡ ∅
5
4
breq1i
⊢ 1 𝑜 ≼ A ↔ suc ⁡ ∅ ≼ A
6
3 5
bitr4i
⊢ ∅ ≺ A ↔ 1 𝑜 ≼ A