This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un , see 1sdom2ALT . (Contributed by NM, 4-Apr-2007) Avoid ax-un . (Revised by BTernaryTau, 8-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1sdom2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on0 | ||
| 2 | 2oex | ||
| 3 | 2 | 0sdom | |
| 4 | 1 3 | mpbir | |
| 5 | 0sdom1dom | ||
| 6 | 4 5 | mpbi | |
| 7 | snnen2o | ||
| 8 | df1o2 | ||
| 9 | 8 | breq1i | |
| 10 | 7 9 | mtbir | |
| 11 | brsdom | ||
| 12 | 6 10 11 | mpbir2an |