This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is less than or equal to its square. For general integers, see zzlesq . (Contributed by NM, 15-Sep-1999) (Revised by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnlesq | |- ( N e. NN -> N <_ ( N ^ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 2 | 1 | mulridd | |- ( N e. NN -> ( N x. 1 ) = N ) |
| 3 | nnge1 | |- ( N e. NN -> 1 <_ N ) |
|
| 4 | 1red | |- ( N e. NN -> 1 e. RR ) |
|
| 5 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 6 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 7 | lemul2 | |- ( ( 1 e. RR /\ N e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( 1 <_ N <-> ( N x. 1 ) <_ ( N x. N ) ) ) |
|
| 8 | 4 5 5 6 7 | syl112anc | |- ( N e. NN -> ( 1 <_ N <-> ( N x. 1 ) <_ ( N x. N ) ) ) |
| 9 | 3 8 | mpbid | |- ( N e. NN -> ( N x. 1 ) <_ ( N x. N ) ) |
| 10 | 2 9 | eqbrtrrd | |- ( N e. NN -> N <_ ( N x. N ) ) |
| 11 | sqval | |- ( N e. CC -> ( N ^ 2 ) = ( N x. N ) ) |
|
| 12 | 1 11 | syl | |- ( N e. NN -> ( N ^ 2 ) = ( N x. N ) ) |
| 13 | 10 12 | breqtrrd | |- ( N e. NN -> N <_ ( N ^ 2 ) ) |